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mus, and the secondary organs include spleen, mesen-
teric lymph nodes and Peyer’s patches. Immune cells can 
be grouped into two categories: lymphocytes and phago-
cytes. The latter group includes monocytes, macrophages 
and neutrophils  [1] . In an immune response, the antigen 
is processed and presented to lymphocytes. Lymphocytes 
need to recognize the antigen via their receptors, as well 
as engage a co-stimulation molecule. This is followed by 
the activation of signaling molecules, which leads to the 
involvement of nuclear factor- � B (NF- � B), gene activa-
tion and mRNA transcription, followed by the synthesis 
and secretion of various cytokines. The secreted cyto-
kines then bind to the appropriate receptors, leading to 
the clinical manifestations of various diseases  [2] .

  Lymphocytes are a diverse population of cells that par-
ticipate in both innate and adaptive immunity. Lympho-
cytes are white blood cells that are uniform in appearance 
but vary in function, and include T, B and natural killer 
(NK) cells. While T and B cells are the effectors of adap-
tive immunity, NK cells do not have recombined anti-
gen receptors and are therefore innate immune lympho-
cytes  [3] .

  When T cells recognize a foreign antigen presented to 
them, they initiate responses that precisely target that an-
tigen. These responses include a direct attack by cyto-
toxic T cells against the antigen-bearing cell, the stimula-
tion of antibody production by B cells and the induction 
of a local inflammatory response  [4] . T cells can differen-
tiate into at least two subtypes of T helper (Th) cells, Th1 
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 Abstract 

 Nutritional deficiency is commonly associated with a signif-
icantly impaired immune response, particularly in relation to 
cell-mediated immunity, the complement system, cytokine 
production and phagocyte function. However, there are few 
data on the consequences of nutritional deficiency in aller-
gic diseases of the lung. In fact, malnutrition is the most com-
mon cause of immunodeficiency worldwide. Several studies 
have indicated that the incidence of alterations in lung func-
tions can be associated with birth weight, specifically with 
maternal malnutrition, but data linking intrauterine under-
nutrition with allergic diseases of the lung are lacking. The 
purpose of this review is to associate malnutrition, including 
intrauterine malnutrition, with the establishment of immune 
responses and the development of lung allergic inflamma-
tion.  Copyright © 2008 S. Karger AG, Basel 

 Immune System and Nutritional Deficiency 

 The immune system consists of organs and several cell 
types that recognize foreign antigens. The primary im-
munological organs are the bone marrow and the thy-
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and Th2 cells. Th1 cells produce a number of cytokines 
including interferon- �  (IFN- � ), which plays a prominent 
role in coordinating the crosstalk between the innate and 
adaptive arms of the immune and inflammatory respons-
es. IFN- �  stimulates macrophages to increase their pro-
duction of a broad gamut of mediators, including auta-
coids, reactive oxygen species, lipid species and pro-in-
flammatory cytokines  [5, 6] . Th2 cells can stimulate 
humoral immunity by producing a number of cytokines 
that stimulate the maturation of B cells into antibody-
producing plasma cells, and promote B-cell class switch-
ing to increase the production of IgE antibodies. Th2 cells 
can also aid in the recruitment and activation of mast 
cells, additional effectors of allergic responses that con-
tribute to chronic inflammation in a variety of tissues 
and disease states. In addition to these specialized pro-
inflammatory responses, Th2 cells can dampen the in-
flammatory response by producing cytokines with anti-
inflammatory properties, such as interleukin (IL)-10  [5] .

  It has long been accepted that immunity depends to 
some extent on nutrition. In fact, nutritional deficiency 
is commonly associated with impaired immune respons-
es, particularly in relation to cell-mediated immunity, 
phagocyte function, cytokine production, the comple-
ment system, the secretory antibody response and anti-
body affinity  [7–10] .

  Studies have pointed to the thymus as a potential me-
diator of the immunological consequences of undernu-
trition. Lymphoid tissues are acutely sensitive to under-
nutrition in infancy and early childhood, and severe mal-
nutrition may lead to ‘nutritional thymectomy’, with 
lasting effects on immunity  [11–14] . Besides atrophy of 
the lymphoid tissue, histologically, there is a loss of cor-
ticomedullary differentiation: there are fewer lymphoid 
cells, and Hassall bodies are enlarged, degenerated and 
occasionally calcified. In the spleen, there is loss of lym-
phoid cells around small blood vessels. In the lymph 
nodes, the thymus-dependent areas show lymphoid cell 
depletion  [15] . The number of mature, fully differentiated 
T lymphocytes is decreased due, in part, to a reduction in 
serum thymic factor activity. In addition, lymphocyte 
proliferation and DNA synthesis are reduced  [15] .

  Adverse factors that impair fetal growth can hinder 
immunological maturation, and this impairment causes 
prolonged effects on the immune response. Individuals 
born during the hungry season in the Gambia show im-
mune system changes, e.g. lower thymic outputs, and de-
creased cellular and humoral responses  [16, 17] . In Paki-
stani adults and Filipino adolescents, the antibody re-
sponse to selected vaccines in those who were small at 

birth was lower than the response in those with a birth 
weight  6 2,500 g  [18, 19] .

  The cellular immune response is impaired and lym-
phocyte subsets are altered in protein-calorie malnutri-
tion (PCM)  [20] . Tropical enteropathy often predates the 
onset of marasmus in Gambian children. This is charac-
terized by a cell-mediated Th1 response, leading to chron-
ic enteropathy characterized by crypt hyperplasia, villous 
stunting and high numbers of intraepithelial lympho-
cytes expressing CD25. T-cell numbers increase and B-
cell numbers decrease with worsening nutrition, and mu-
cosal cytokine production becomes biased toward a pro-
inflammatory response  [21] . These studies suggest that 
PCM is associated with a reduction in regulatory im-
mune responses in the mucosal microenvironment, po-
tentially impairing the normal mechanisms of immune 
regulation and tolerance  [22] .

  In animal models of intrauterine nutritional deficien-
cy, protein energy malnutrition as well as deprivation of 
selected nutrients results in reduced immune responses 
in the offspring  [23] . Deficiencies in pyridoxine, folic 
acid, and vitamins A, C, and E result in impaired cell-me-
diated immunity and reduced antibody responses. De-
creased lymphocyte stimulation in response to mitogens 
such as phytohemagglutinin is observed in vitamin B de-
ficiency. Zinc deficiency is associated with lymphoid at-
rophy, decreased delayed cutaneous hypersensitivity re-
sponses and lower thymic hormone activity  [9] . Fraker 
 [24]  suggested the effects of zinc restriction on lympho-
cyte glucocorticoid receptors in laboratory rodents as a 
mechanism for immunosuppression. In a mouse model, 
Beck et al.  [25]  showed that pulmonary damage due to the 
influenza virus was greater in selenium-deficient ani-
mals.

  Although T and B lymphocytes represent effector cells 
of the immune system, the functional capacities of lym-
phocytes, especially in the induction and function of an-
tigen-specific lymphocytes, are regulated by antigen-pre-
senting dendritic cells (DC)  [26] . Studies have demon-
strated that impaired functional capacities of DC are 
related to the pathogenesis of a chronic viral carrier state 
and that the activation of DC in these subjects has thera-
peutic potential  [27, 28] . Niiya et al.  [29]  demonstrated in 
PCM mice that there were decreases in the number of 
spleen DC, their T-lymphocyte-stimulatory capacities, 
and their production of IL-12p70 and IFN- � . The authors 
suggested that chronic undernutrition disrupts antigen-
specific immune responses, and that this disruption can 
be attributed at least in part to reduced numbers and im-
paired functions of DC.
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  Macrophages are a major component of the mononu-
clear phagocyte system and consist of closely related cells 
of bone marrow origin, including blood monocytes and 
tissue macrophages. From the blood, monocytes migrate 
to various tissues and transform into macrophages. Mac-
rophages have three major functions in inflammation: 
antigen presentation, phagocytosis and immunomodula-
tion through the production of various cytokines and 
growth factors. Macrophages play a critical role in the 
initiation, maintenance and resolution of inflammation. 
They are activated and deactivated in the inflammatory 
response. Activation signals include cytokines (IFN- � , 
granulocyte-macrophage colony stimulating factor, GM-
CSF, and TNF- � ), bacterial lipopolysaccharide (LPS), ex-
tracellular matrix proteins and other chemical media-
tors. Inhibition of inflammation by the removal or deac-
tivation of mediators and inflammatory effector cells 
permits the host to repair damaged tissues  [30] .

  Depression of the cellular immune system predisposes 
the host to increased morbidity and mortality in experi-
mental models and in human PCM  [31, 32] . Significant 
impairments in global functions of the macrophages that 
are vital for regulating both the innate and adaptive im-
mune systems have been demonstrated in PCM  [33] . 
Macrophage dysfunction in PCM includes significantly 
diminished pro-inflammatory cytokine production, de-
creases in respiratory burst activity, impaired phagocyte 
activity and significant decreases in the cell yield of peri-
toneal macrophages  [33, 34] . Additionally, malnutrition 
is associated with a significant increase in baseline and 
stimulated peritoneal macrophage apoptosis that con-
tributes to an immunocompromised state  [35] . Anstead 
et al.  [36]  demonstrated that macrophages from a murine 
model of multinutrient undernutrition showed increased 
IL-6 production (a potential immunosuppressive media-
tor) and decreased IL-10 and TNF- �  production follow-
ing stimulation with IFN- � /LPS. Neutralization of TNF-
 �  in macrophage cultures from control mice mimicked 
the effect of malnutrition on nitric oxide (NO) and IL-10 
production (where these productions were reduced), 
whereas supplemental TNF- �  added to cultures of mac-
rophages from malnourished mice increased NO secre-
tion. Redmond et al.  [34]  also demonstrated that super-
oxide anion production in resident and activated (LPS, 
IFN- �  and bacille Calmette-Guérin infection) peritoneal 
macrophages was significantly reduced in malnourished 
mice. Candida phagocytosis and killing was also sup-
pressed  [34] .

  The role of micronutrients on phagocytosis functions 
has been demonstrated. Zinc deficiency results in de-

creased human monocyte phagocytosis  [37] , and zinc 
supplementation directly induces cytokine production 
(predominantly IL-1, IL-6 and TNF- � ) by mononuclear 
cells in vitro  [38] .

  In a recent study, Rodriguez et al.  [39]  showed that 
malnutrition in children severely impaired IL-2 and IFN-
 �  production, and increased IL-4 and IL-10 production 
by CD4+ and CD8+ cells. These findings demonstrate 
that malnutrition alters the balance of type 1 and type 2 
responses. Th1 cells produce IL-2, IFN- �  and TNF- � , 
and mediate immunity to viral and bacterial pathogens, 
whereas Th2 cells produce IL-4, IL-5, IL-6, IL-10 and IL-
13, and are involved in allergic diseases and the defense 
against parasitic infections. In addition, the activation 
capability of CD4+ and CD8+ cells is considerably de-
creased. The authors concluded that these alterations 
contribute to the reduced immunological capacity and 
increased sensitivity to infections associated with malnu-
trition.

  The complement system is composed of membrane-
bound regulators and receptors as well as numerous plas-
ma proteins that interact with various cells and mediators 
of the immune system  [40] . This system plays an impor-
tant role in anti-microbial defense, and in the clearance 
of immune complexes as well as apoptotic and necrotic 
cells. The role of complement is not restricted to the in-
nate immune system and includes important functions 
in the regulation of adaptive immune responses. The 
complement system consists of three different pathways 
that all converge on the activation of the central comple-
ment molecule, C3  [41, 42] . Activation of C3 results in a 
variety of immunological reactions, such as immune ad-
herence, phagocytosis, antibody response, cytolysis, in-
flammation and the killing of pathogenic microorgan-
isms. In protein malnutrition, the concentrations and ac-
tivity of most complement components are decreased. A 
reduction in C3, C5, factor B and total hemolytic activity 
has been well documented. A slight reduction in the op-
sonic activity of plasma and a reduction in the metabolic 
activation and intracellular destruction of bacteria have 
also been observed  [7] . 

  Chandra et al.  [43]  showed that PCM decreased the 
affinity of antibodies to tetanus toxoid, especially after 
primary immunization, which may explain the higher 
frequency of antigen-antibody complexes found in mal-
nourished patients. As opposed to serum antibody re-
sponses, secretory IgA (sIgA) antibody concentrations 
were lower after immunization with viral vaccines; there 
was a selective reduction in sIgA concentrations with 
some compensatory increase in IgM concentrations in 
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secretions. This may have several clinical implications, 
including an increased frequency of septicemia com-
monly observed in undernourished children  [7, 15] . IgG 
from the mother acquired through placental transfer is 
the principal immunoglobulin in cord blood. All four 
subclasses of IgG are detected in fetal sera as early as 16 
weeks of gestation, with the bulk consisting of IgG1. In 
small-for-gestation infants, the cord blood levels of IgG1 
are reduced much more than those of the other IgG 
 subclasses; the number of immunoglobulin-producing 
cells and the amount of immunoglobulin secreted is de-
creased in small-for-gestation infants who are symptom-
atic (those with recurrent infections)  [44] .

  Malnutrition and Lung Allergic Inflammation 

 Asthma is one of the most common allergic diseases 
in industrialized countries. In 1998, nearly 50% of school-
aged children suffered from atopy or other types of hy-
persensitivity  [45] .

  Asthma is a complex syndrome with many clinical 
phenotypes in both adults and children. Its major char-
acteristics include a variable degree of airflow obstruc-
tion, bronchial hyperreactivity and airway inflammation 
 [46] . The pathological process is linked to chronic in-
flammation and its role in the induction of hyperrespon-
siveness following infiltration and accumulation of in-
flammatory cells  [47] .

  In asthma, the airway lumen is occluded by a tena-
cious mucus plug composed of plasma proteins exuded 
from airway vessels and mucus glycoproteins secreted 
from surface epithelial cells. The airway wall is edema-
tous and infiltrated with inflammatory cells, which are 
predominantly eosinophils and lymphocytes. In fact, the 
inflammation that occurs in asthma is often described as 
eosinophilic  [48] . The eosinophil number has been shown 
to correlate with the severity of the disease. This happens 
because eosinophils have the potential to cause damage 
to the airway mucosa and associated nerves through the 
release of granule-associated basic proteins (which dam-
age nerves and epithelial cells), lipid mediators (which 
cause bronchoconstriction and mucus hypersecretion) 
and reactive oxygen species (potentially able to injure 
mucosal cells)  [49] .

  Inflammatory mediators such as prostaglandins, leu-
kotrienes, platelet-activating factor (PAF) and NO are in-
volved in the pathogenesis of asthma, where they contrib-
ute to early events such as inflammatory cell infiltration, 
bronchial hyperreactivity and mucus secretion  [50] .

  The production of prostaglandins in the airways is 
well documented, but it is not clear whether these media-
tors play a deleterious or a beneficial role in airway dis-
eases. Prostaglandin E 2  (PGE 2 ) has been shown to have a 
protective effect on allergen-induced  [51]  and aspirin-in-
duced asthma  [52] . An inverse correlation between eo-
sinophilic airway inflammation and PGE 2  concentration 
in induced sputum from asthmatic subjects has also been 
shown, which supports the possible anti-inflammatory 
role of PGE 2   [53] . On the other hand, other studies sug-
gested that PGE 2  may enhance eosinophil survival, sup-
porting a potential pro-inflammatory role for PGE 2   [54, 
55] .

  The cysteinyl-leukotrienes, LTC 4 , LTD 4  and LTE 4 , are 
potent inflammatory mediators that play an important 
role in the pathophysiology of asthma and are elevated in 
the airways in response to allergen challenge  [56, 57] . In 
asthma, bronchoconstriction, bronchial hyperreactivity 
induction, increased vascular permeability, mucus secre-
tion and smooth muscle cell proliferation are all related 
to leukotriene activity  [58] . The inhibition of the cyste-
inyl-leukotrienes with selected receptor antagonists has 
marked anti-inflammatory effects, including inhibition 
of airway eosinophil influx and hyperreactivity, and se-
cretion of mucus and cytokines  [59, 60] . PAF is also re-
leased in several asthma models and has a number of ef-
fects, including the recruitment and activation of eosino-
phils  [61] , the release of mediators such as LTC 4  from 
eosinophils and the stimulation of mucus secretion  [62] . 
However, previous studies with PAF receptor antagonists 
have failed to show significant beneficial effects on the 
allergen-induced response in asthmatic subjects, thus 
casting doubt on the importance of PAF as a major me-
diator in asthma  [63, 64] .

  NO seems to play an important role in amplifying and 
perpetuating Th2-mediated inflammatory responses. It 
has been speculated that the large amount of NO gener-
ated in the asthmatic airways may result in the suppres-
sion of Th1 cells and that a concomitant reduction in 
IFN- �  levels may lead to the proliferation of Th2 cells 
 [65] . The exhaled NO detected in asthmatics appears to 
be derived from inducible NO synthase (iNOS) expressed 
by bronchial epithelial cells or immuno-inflammatory 
cells following allergen exposure, as was shown in sensi-
tized mice  [66, 67] . It is also clear that pulmonary iNOS 
expression is up-regulated in the lungs of asthmatics  [66, 
68] . However, the role of iNOS in asthma as either a pro- 
or anti-inflammatory mediator remains unresolved. Ex-
perimental models of asthma in mice have shown that 
acute inhibition of iNOS activity either reduced the num-
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ber of eosinophils and lymphocytes in the bronchoalveo-
lar lavage fluid, reduced hyperreactivity and mucus pro-
duction  [69–71] , or exacerbated airway inflammation 
and chemokine expression  [72] . Controversial data were 
also found in studies with iNOS knockout mice. Xiong et 
al.  [73]  showed that iNOS knockout animals displayed 
diminished airway inflammation, while others showed 
that airway inflammation is fully expressed in iNOS 
knockout mice  [70, 74] .

  In asthma, cytokines produced by activated Th2 lym-
phocytes are believed to play critical roles in regulating 
the inflammatory process. IL-4, IL-5, IL-13 and trans-
forming growth factor- �  (TGF- � ) have been suggested to 
be key factors contributing to the chronic inflammatory 
state characterizing asthma  [75] .

  In asthmatic patients, there is an increase in the num-
ber of CD4+ T cells in the airways, which are predomi-
nantly Th2 cells, whereas in normal airways, Th1 cells 
predominate  [76] .

  IL-4 appears to be important in the early stages of Th2 
cell development. The synthesis of IgE by B lymphocytes 
in immunoglobulin isotype switching occurs with the 
expression of IL-4  [49] .

  IL-5 may play an important part in eosinophil matura-
tion, chemoattraction and activation in asthma, which 
may underlie bronchial hyperresponsiveness. It may also 
interact with other eosinophil chemoattractants and ac-
tivators such as chemokines to activate and induce che-
moattraction of eosinophils  [75] . In addition, IL-5 is re-
lated to airway remodeling; in IL-5-deficient mice chron-
ically challenged with allergens, peribronchial fibrosis 
and the thickness of the peribronchial smooth muscle 
layer are significantly reduced  [77] .

  An increased expression of IL-13 mRNA has been re-
ported in the airway mucosa of patients with atopic and 
non-atopic asthma. There is a significant correlation be-
tween eosinophil counts and IL-13 levels, since IL-13 ad-
ministered to mice increases airway eosinophilia and 
bronchial hyperresponsiveness. IL-13 induces the expres-
sion of CD23 in purified human B cells and acts as a 
switch factor directing IgE synthesis, similarly to IL-4 
 [78] .

  In asthma, the airway epithelium is frequently subject 
to damage, and current concepts suggest that TGF- �  
could play an important role in modulating repair of the 
airway in asthma  [79] . TGF- �  may contribute to epithe-
lial repair by altering epithelial cell adhesion and modu-
lating epithelial cell proliferation and differentiation as 
well as epithelial cell production of other mediators 
 [80] .

  Although genetic factors play an important role in an 
individual’s risk for asthma, there is strong evidence that 
nutrition also affects the development of lung allergic 
diseases.

  Vitamin A, E and C are the vitamins most extensively 
investigated for their effects on asthma. All three are an-
tioxidants, and vitamins C and E may also have other 
anti-inflammatory or anti-allergic effects  [81]  because 
supplementation with vitamins C and E improves lung 
function in asthmatic children exposed to high levels of 
air pollution  [82] .

  Vitamin A is essential for cellular and subcellular 
membrane stability, and influences the growth and re-
pair of epithelial cells  [83] . Vitamin A may also modulate 
Th1/Th2 development with a shift toward Th2  [84] . 
Schuster et al.  [84]  showed that vitamin A deficiency pro-
duced by a strict diet deficient in vitamin A prevents the 
development of ovalbumin-induced allergic airway in-
flammation and hyperresponsiveness, which are the 
hallmarks of asthma. Vitamin A deficiency also reduced 
other markers of pulmonary inflammation, including 
pulmonary eosinophilia, the levels of IL-4 and IL-5 in 
bronchoalveolar lavage and the synthesis of plasma IgG.

  Zinc deficiency in animals is associated with a wide 
range of immune impairments and has a marked impact 
on bone marrow, decreasing the number of nucleated 
cells, and the number and proportion of cells derived 
from lymphoid precursors  [85] . Moderate or mild zinc 
deficiency in men results in decreased NK cell activity, a 
lowered CD4+:CD8+ ratio and decreased lymphocyte 
proliferation  [86] . Richter et al.  [87]  demonstrated in a 
murine model that zinc deficiency increases allergic eo-
sinophilic inflammation, whereas dietary zinc supple-
mentation attenuates its intensity.

  Minerals like selenium and magnesium have been 
linked to asthma development. Selenium is also involved 
in antioxidant defenses as a coenzyme for glutathione 
peroxidase. Early case-control studies demonstrated de-
creased selenium intakes and serum levels in patients 
with asthma in New Zealand  [82, 88, 89]  and the United 
Kingdom  [90] . Magnesium has several biological effects 
of potential relevance to asthma, including bronchodila-
tion when given intravenously in acute severe asthma 
 [91] . There is also strong cross-sectional epidemiologic 
evidence for dietary magnesium as a protection against 
asthma  [82, 88, 89] .

  Godfrey  [92]  reported that people in Africa presenting 
variable degrees of malnutrition have low incidences of 
allergic diseases despite having high IgE levels in the se-
rum. In fact, Forte et al.  [93]  showed that children with 
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moderate primary PCM presented reduced serum IgE 
levels, which could correspond with reduced atopic reac-
tions in malnourished patients.

  Epidemiologic studies have indicated that in humans, 
the incidence of alterations in lung functions can be as-
sociated with birth weight and specifically with maternal 
malnutrition  [94, 95] . However, with respect to lung al-
lergic inflammation, the data are controversial.

  Some authors have demonstrated no association be-
tween low birth weight and asthma. Hagstrom et al.  [96] , 
analyzing characteristics such as birth weight, birth 
height, head circumference, placental weight and gesta-
tional age, concluded that birth weight was not associated 
with a ‘programming’ factor for asthma, and other envi-
ronmental factors in childhood seemed more important 
than fetal malnutrition for the development of asthma in 
adult life. Brooks et al.  [97]  evaluated the contribution of 
birth weight to asthma prevalence among children 
younger than 4 years in the United States, and observed 
a strong independent association between low birth 
weight and asthma.

  On the other hand, some authors have demonstrated 
that asthma symptoms are inversely associated with birth 
weight. Kitchen et al.  [98]  concluded that increased bron-
chial responsiveness is common in school children who 
were born substantially preterm. Barker et al.  [99]  found 
that the level of forced expiratory volume in 1 s in elderly 
males and the mortality from chronic obstructive lung 
disease in males were both inversely associated with birth 
weight. The authors hypothesized that intrauterine con-
ditions causing growth retardation might irreversibly 
constrain the development of the airways. A study in Is-
raeli recruits showed an association between low birth 
weight and asthma in male adolescents  [100] , and in a 
study of British children aged 5–11 years, lung function 
was associated with birth weight, and respiratory illness 
was associated with prematurity  [101] . Svanes et al.  [102]  
analyzed a random sample of young adults in Norway, 
and concluded that asthma symptoms were strongly as-
sociated with low birth weights, and the risk for adult 
asthma partly established early in life. These results sug-
gest that poor intrauterine growth is involved in the etiol-
ogy of asthma.

  Many studies indicate low birth weight as a risk factor 
for asthma during childhood  [97, 103, 104] . However, 
when only adult individuals were considered, the rela-
tionship between low weight presented at birth and asth-
ma was controversial  [105] . In fact, Landgraf et al.  [106] , 
investigating the development of asthma in intrauterine 
undernourished rats, observed that rats challenged with 

ovalbumin at 9 weeks of age presented significant de-
creases in the allergic inflammatory response compared 
with rats challenged with ovalbumin at 5 weeks of age. 
These data indicate that, in intrauterine undernourish-
ment models, the intensity of the allergic inflammatory 
response depended on the age at which the organism was 
challenged.

  Leptin and Glucocorticoids in Malnutrition 

 The obese  (ob)  gene product, named leptin from the 
Greek term  leptos  meaning thin, is a pleiotropic cytokine 
involved in different biologic systems. It shares structur-
al similarities with some cytokines (including IL-6, IL-11, 
IL-12 and IL-15) as well as granulocyte colony-stimulat-
ing factor and leukemia-inhibitory factor. As an endo-
crine hormone, leptin is synthesized mainly by adipose 
tissue in proportion to the body mass index and the body 
fat mass  [107–109] . It is present in nanogram concentra-
tions in the systemic circulation to limit food intake, to 
promote the breakdown of fat and to increase energy ex-
penditure  [107] .

  The genetic defect in  ob/ob  mice was first described in 
the 1950s as a spontaneous mutation that causes a severe 
obese phenotype due to both overeating and decreased 
energy expenditure  [110] . Studies on both leptin-defi-
cient  (ob/ob)  and leptin receptor-deficient  (db/db)  mice 
have illustrated the diverse functions of leptin, as re-
vealed by the findings of marked abnormalities in neuro-
endocrine function  [111, 112] .

  Leptin plays a major role in modulating immune re-
sponses  [113] . It has been shown to provide a proliferative 
signal in hematopoiesis and lymphopoiesis. Moreover, it 
can activate monocytes, DC and macrophages, and stim-
ulate them to produce Th1-type cytokines  [114] . Leptin 
also exerts activating effects on neutrophils and NK cells 
and stimulates their gene expression  [115–117] . A modu-
latory role in adaptive immunity by enhancing T-cell sur-
vival and stimulating T-cell production of pro-inflam-
matory cytokines such as IFN- �  has also been demon-
strated  [118, 119] .

  Cytokines orchestrate the host response to infectious 
and inflammatory stimuli. The induction of a cytokine 
cascade, which includes TNF- � , IL-6 and IL-1, leads to 
pathophysiological changes such as hypoglycemia, in-
duction of acute-phase response proteins and anorexia 
 [120] . Leptin levels are acutely increased by inflamma-
tory and infectious stimuli such as LPS, IL-1, TNF- �  and 
ovalbumin  [106, 121–123] .
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  In macrophages/monocytes, leptin up-regulates 
phagocytic function  [124]  via phospholipase activation 
 [125] , as well as pro-inflammatory cytokine secretion, 
such as TNF- �  (early), IL-6 (late) and IL-12  [119, 126, 
127] . In macrophages, leptin can induce the production 
of factors involved in regulating the immune response, 
e.g. NO, LTB 4 , cholesterol-acyl-transferases-1 and the cy-
clooxygenase COX-2  [124, 128–130] . Leptin deficiency 
exacerbates susceptibility to LPS- and TNF- � -induced 
lethality and liver injury  [131] . These data support a pleio-
tropic role for leptin in maintaining immune homeosta-
sis by regulating the survival and activity of immune cells 
and innate immune responses  [132] .

  In addition to modulating phagocytosis and cytokine 
production by macrophages, leptin has been shown to 
regulate another aspect of the nonspecific immune re-
sponse. Functional OB-R (leptin receptor) was detected 
on the membrane of polymorphonuclear neutrophils 
(PMN) and was shown to enhance oxidative species pro-
duction by stimulated PMN  [133] . This indicates that 
leptin can modulate PMN functions by regulating their 
oxidative capacity  [108] .

  Other effects of leptin on lymphocytes include the al-
loproliferative enhancing response of human peripheral 
blood lymphocytes by acting on naïve T lymphocytes  [113] , 
phytohemagglutinin- and concanavalin A-induced prolif-
eration in human T lymphocytes, which increases the ex-
pression of activation markers CD69, CD25 and CD71 in 
CD4+ and CD8+ cells  [127] , cytokine production by T 
lymphocytes, polarization of Th cells toward a Th1 pheno-
type by enhancing proliferation and IL-2 production of 
naïve T cells, the increase in IFN- �  production and the in-
hibition of IL-4 production in memory CD4+ T cells, and 
the up-regulation of the expression of adhesion molecules 
(e.g. VLA-2 and ICAM-1) on CD4+ T cells  [113] .

  Consistent with the proliferative activity of leptin on 
T cells, thymic atrophy is present in leptin-deficient mice 
 (ob/ob)  and leptin receptor-deficient  (db/db)  mice  [134, 
135] . Indeed, leptin-deficient mice  (ob/ob)  and leptin re-
ceptor-deficient  (db/db)  mice develop a complex syn-
drome characterized by abnormal reproductive function, 
hormonal imbalance, and alterations in the hematopoi-
etic and immune systems. Similar alterations have been 
described in leptin-deficient-humans  [136] .

  The mechanism for the presumed anti-inflammatory 
effect of leptin deficiency is unknown  [137] , but an imbal-
ance between pro- and anti-inflammatory cytokines has 
been noted  [131, 138] . Mancuso et al.  [124, 125]  showed 
that leptin augments leukotriene synthesis of alveolar 
macrophages, and leptin-deficient mice present reduced 

leukotriene synthesis. In nourished rats submitted to al-
lergic lung inflammation, leptin levels were increased, 
while no increase was observed in intrauterinely under-
nourished rats. Coincidently, reduced levels of LTB 4  and 
LTC 4  were also found  [106] .

  Malnutrition is known to induce a state of immuno-
deficiency and a predisposition to death by infectious dis-
eases  [139] . During fasting or starvation, leptin levels 
drop disproportionately to the decrease in adipose tissue 
mass, and the correlation between leptin levels and fat 
stores is lost  [140] . The adaptation of the organism to star-
vation is characterized by metabolic, endocrine and im-
munological changes. Suppression of immune, reproduc-
tive and thyroid functions, and stimulation of the hypo-
thalamus-pituitary-adrenal (HPA) axis are among the 
changes induced by starvation, as well as reduced immu-
nity, particularly the T-lymphocyte response  [141, 142] . 
Leptin levels fall sharply with the onset of starvation. 
Conversely, the administration of leptin effectively pre-
vents neuroendocrine alterations, which include chang-
es in gonadal, adrenal and thyroid hormones in male 
mice, and the delay in ovulation in female mice  [140] . In 
humans, Canavan et al.  [143]  observed that physiologi-
cal leptin administration stimulates inflammatory and 
platelet responses during caloric deprivation.

  Leptin is hypothesized to promote the Th1 immune 
response with secretion of the pro-inflammatory cyto-
kine IFN- �   [144] , and malnutrition-related hypolepti-
nemia is associated with a reduced Th1 response  [145] .

  Glucocorticoids, specifically cortisol in humans and 
corticosterone in rodents, are potent anti-inflammatory 
agents, and the HPA axis functions to modulate suscep-
tibility or resistance to inflammatory disease  [146] .

  Glucocorticoids bind to glucocorticoid receptors in 
the cytoplasm which then dimerize and translocate to the 
nucleus, where they bind to glucocorticoid response ele-
ments on glucocorticoid-responsive genes, resulting in 
increased transcription. The most striking effect of glu-
cocorticoids is to inhibit the expression of multiple in-
flammatory genes (cytokines, enzymes, receptors and 
adhesion molecules). This is likely to be due to a direct 
inhibitory interaction between activated glucocorticoid 
receptors and activated transcription factors, such as NF-
 � B and activator protein-1, which regulate inflammatory 
gene expression  [147, 148] .

  Glucocorticoids may control inflammation by inhib-
iting many aspects of the inflammatory process via an 
increase in the transcription of anti-inflammatory genes 
and a decrease in the transcription of inflammatory genes 
 [147, 149, 150] .
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  Glucocorticoids can suppress inflammation by in-
creasing the synthesis of several anti-inflammatory pro-
teins, such as:
  – lipocortin-1, a protein that has an inhibitory effect on 

phospholipase A 2  (PLA 2 ) and therefore may inhibit 
the production of lipid mediators  [151] ; 

 – IL-1 receptor antagonist, a cytokine that blocks the 
binding of IL-1 to its receptors, whose synthesis is in-
creased by glucocorticoids, thus counteracting the ef-
fect of the pro-inflammatory cytokine IL-1  [152, 
153] ; 

 – IL-10, which inhibits the transcription of many pro-
inflammatory cytokines, chemokines and inflamma-
tory enzymes  [154, 155] ; 

 – I � B, the inhibitory protein that regulates NF- � B; glu-
cocorticoids can increase the synthesis and transcrip-
tion of I � B- � , the predominant form of I � B, in mono-
nuclear cells and T lymphocytes, inhibiting NF- � B 
activity  [148, 156] . 
 Glucocorticoids also exert inhibitory effects on the 

transcription of several pro-inflammatory cytokines 
such as IL-1 � , IL-2, IL-3, IL-6, TNF- � , GM-CSF and 
 chemokines including IL-8, RANTES, MCP-1, MCP-3, 
MCP-4, MIP-1 �  and eotaxin  [157–162] .

  Inflammatory enzymes can be negatively modulated 
by glucocorticoids, resulting in a reduced inflammatory 
response. It has been shown that inhibition of COX-2 by 
glucocorticoids results in the reduced formation of pros-
taglandins and tromboxanes  [163, 164] , as well as inhibi-
tion of gene transcription of a cytosolic form of PLA 2  in-
duced by cytokines  [165] . Glucocorticoids can also in-
hibit the induction of the inducible form of NO synthase 
(iNOS).

  Glucocorticoids can reduce the survival of some in-
flammatory cells such as eosinophils and T lymphocytes. 
Eosinophil survival is dependent on the presence of cy-
tokines such as IL-5 and GM-CSF, and exposure to glu-
cocorticoids blocks the effects of these cytokines and 
leads to eosinophil apoptosis  [147, 166, 167] .

  Adhesion molecules play an important role in the traf-
ficking of inflammatory cells to sites of inflammation. 
The expression of adhesion molecules on endothelial, ep-
ithelial or inflammatory cells can be induced by cyto-
kines, and glucocorticoids may indirectly reduce the ex-
pression of these molecules. Inhibitory effects on the pro-
duction of cytokines (e.g. IL-1 �  and TNF- � ) or a direct 
inhibitory effect on adhesion molecules such as ICAM-1 
and E-selectin at the level of gene transcription can ac-
count for the indirect effects of glucocorticoids  [168–
170] .

  Animal models  [171, 172]  and clinical studies  [173–
175]  have associated maternal protein-calorie undernu-
trition with higher glucocorticoid levels. In intrauterine 
undernourished rats, along with increased glucocorti-
coid levels, downregulation of L- and P-selectin and 
ICAM-1 expression have been observed. This may con-
tribute to the decreased leukocyte migration presented by 
these rats  [176] . In addition, impaired L-selectin expres-
sion was found in bone marrow cells  [177] .

  It is well established that food availability influences 
the rhythmicity of the HPA axis. Indeed, starvation and 
food restriction increase the activity of the HPA axis both 
in humans  [178, 179]    and in rats  [180, 181] . This can lead 
to adrenal hypertrophy and increased circulating gluco-
corticoid levels. This alteration, in addition to affecting 
the metabolic homeostasis, can compromise innate de-
fense mechanisms  [182] .

  In prenatal undernutrition, this is not well established. 
Lesage et al.  [183]  verified that rat fetuses from under-
nourished dams during the last week of gestation pre-
sented higher plasma corticosterone levels than did fe-
tuses from nourished dams. Landgraf et al.  [106]  ob-
served that an increase in glucocorticoid levels probably 
contributes to attenuated allergic lung inflammation in 
intrauterine undernourished rats. On the other hand, 
Langley-Evans et al.  [184]  observed unaltered basal cor-
ticosterone concentrations, but increased hippocampal 
glucocorticoid receptor binding, in the progeny of pro-
tein-restricted rats, a result that suggests increased gluco-
corticoid feedback sensitivity.

  Low leptin levels and hypercortisolemia are promi-
nent features of starvation, and both leptin and gluco-
corticoids have been shown to have immunomodulat-
ing properties. Furthermore, a regulatory loop exists be-
tween the HPA axis and circulating leptin. In  ob/ob  mice, 
leptin deficiency results in chronic HPA axis activation, 
which is reversed by leptin treatment  [185] . Fasting leads 
to low leptin levels and HPA axis activation. Leptin ad-
ministration during fasting substantially prevents the ac-
tivation of the HPA axis  [185, 186] , and the reduction of 
hypercortisolemia might mediate some of the immuno-
suppression due to the low levels of leptin during starva-
tion. It is therefore likely that the effects of leptin on the 
immune system are both direct and mediated by the 
leptin-induced modulation of glucocorticoid levels  [108] .

  Combined with a decrease in leptin levels that may 
mediate the glucocorticoid response  [149] , the increase in 
blood glucocorticoid levels is part of the early endocrino-
logic response to acute deficits in protein and energy 
 [187] .
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  Concluding Remarks 

 The data presented in this article indicate that inade-
quate nutrition affects immune responses. Adverse fac-
tors that impair fetal growth can hinder immunological 
maturation, and this impairment causes prolonged ef-
fects on immune responses. The nutritional deficiency is 
associated with depression of immune responses, in rela-
tion to cell-mediated immunity, phagocyte function, cy-
tokine production, the complement system, the secretory 
antibody response and antibody affinity. Epidemiologic 
studies have indicated that in humans the incidence of 
alterations in lung functions can be associated with birth 
weight and specifically with maternal malnutrition. 
Whereas some authors demonstrated no association be-
tween low birth weight and asthma, others demonstrated 
that asthma symptoms are inversely associated with birth 
weight. Intrauterine nutrition is fundamental for the de-
velopment and functioning of organs and tissues, and 

 intrauterine undernourishment reduced allergic lung 
 inflammation in the offspring. In an intrauterine un-
dernourishment model, the intensity of the allergic in-
flammatory response depends on the age at which the 
organism is challenged. It is likely that leptin affected the 
immune system (i.e. the decrease in allergic inflamma-
tory responses) both via a direct effect and via interfer-
ence on glucocorticoid levels.
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